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Abstract. The symbolic method of Kramers is used to obtain an expression for a 9- j  symbol 
in terms of multiple products of spinor invariants. This technique is generalised from the 
unitary (compact) symplectic group Sp(2) to Sp(2n), and a generating function is found 
for a class of multiplicity-free 9-(u) symbols, where (a) denotes an irreducible representation 
of Sp(2n) of the form (u,uz.  . . U,,) for which a, = 0 ( i  > 1). Schwinger's generating function 
for a 9- j  symbol is recovered by setting n = 1. A specialisation to 6-(u) symbols is made 
by setting one of the nine irreducible representations equal to the scalar (00. , .O), and the 
method is checked by working out a sample 6-(u) symbol previously obtained by an aufbau 
approach. 

1. Kramers' symbolic method 

In the early years of quantum mechanics, Kramers (1930) introduced the spinor (6, 7) 
when calculating the intensities of certain electronic transitions in atoms. A key 
ingredient in this approach is the use of the products 

6 f + m 7 f - m [ ( / +  m)!(/-  VI)!]-''^ (-1s m s I )  (1) 

for the 21 + 1 states dfm of a single electron. The factorials in (1) serve to normalise 
the 4," when they are combined with 

a:""a;-"[(l+ m)! ( 1  - m) !I-''* ( 2 )  

which represent 4k. The differential operators a / a g  and a / a 7 ,  which we abbreviate 
to a, and a,, form the spinor (a,, -8,). The angular momentum vector 1 can be 
represented by 

1, = 63, 1- = q a t  11 =&a, - 7a1) (3) 
where I ,  = I ,  * il,,, and it is easy to verify that the eigenvalues of 1' and I ,  for 4fm are 
l ( l +  1) and m. Instead of 5, 7, a, and a,, Schwinger (1965) used the respective creation 
and annihilation operators a : ,  a : ,  a, and a- ,  imposing on them the commutation 
properties of bosons. We prefer to retain the more naive notation of Kramers (1930), 
partly because the functional roles of the spinors are more transparent and partly to 
emphasise the connection to the work of such nineteenth century mathematicians as 
Clebsch and Gordan, as summarised, for example, by Elliott (1895) and Grace and 
Young (1903). A general description of Kramers' methods has been made by Brinkman 
(1956). 
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Unitary transformations of the two components 5 and 71 form the elements of the 
group U(2). The parameters (a, p, y )  defining a transformation of the unimodular 
subgroup SU(2) can be so chosen as to be identical to the Euler angles for a rotation 
belonging to the group SO(3) whose generators are the components of 1. In exploiting 
this correspondence (a homomorphism) between SU(2) and S 0 ( 3 ) ,  Kramers (1930) 
introduced the notion of a spinor invariant such as (51772-77,52). Another way of 
writing this invariant is f i ( t $ 1 ’ 2 ) t ~ 1 ’ 2 ) ) ( o ) ,  where the spinor (tl ,  q l )  is represented by a 
spherical tensor tj1/2) of rank 4. The notation indicates that the two tensors and 
t:‘’2) are coupled to a final rank of zero. It is obvious that ( t ~ ” 2 ) t j 1 ’ 2 ) ) ( o )  vanishes when 
i = j ,  so a pair of identical spinors can only be usefully coupled to a rank of 1 .  In 
general, a tensorial product t (k’  of n identical spinors vanishes unless k = i n .  Put 
equivalently, successive t‘k’ can be defined by means of the equation 

(4) ( t (k) t (k’ ) ) (k”)  = 6 ( k  + k’ ,  p ) t ( k ” )  

the stretched nature of the coupling preventing any ambiguity in the sequence of 
construction. The components ( tbk ’ ) ,  of a particular t i k )  are given by 

5:+”:-“( k + q )  ! ( k  - q )  !]-1’2 ( 5 )  
following equation ( 1 ) .  It is easy to confirm that 

(2k+ 1)’/2(t:k)t;k’)‘o) = (&VJ - v,‘$/)Zk. 

In a similar way we can define d“/2’  as a tensor with components ( a v ,  -80, thereby 
obtaining 

(2k+ 1 ) ’ / 2 ( d y ’ p ) ‘ o ’  = f i 2 k  (7)  

filJ = a2/at,avJ -d2/av1a6,.  (8) 

where 

2. Generating function for a 3-j symbol 

To see how these results can be put to use, consider the product E, given by 

where 
(9) 

(10) 
Since E is constructed from invariants e,, it must be an invariant itself. However, on 
bringing the pairs of tensors t :k )  with common i together and using equation (4), we 
eventually arrive at an expression of the form 

- = o~2+12-J30Jz+Jj-1~oJi*Ji-J2 

@I/ E 5lvJ - 716’ 

23 31 

where the coefficient in large parentheses, the so-called 3-j  symbol, combines the 
components of the three tensors to produce an invariant. By equating corresponding 
powers of 5;. and vl in (9) and (1 l ) ,  we can determine the dependence of the 3-j symbol 
on m ,  , m2 and m 3 .  The calculation is not quite complete, however, since we need to 
know the factor A ( j l j 2 j 3 )  in (11). If we take the traditional normalisation 
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it can be determined by means of the equation 

A’( jl j2j3) = ~ J Z J + J Z - J ~ ~ : ; ” ~ - J I ~ ’ ; ~ + J I - J ~ ~ J I ’ J ~ - J ~ ~ ’ ; : J ~ - J I  12 12 ‘31 H J3+11-]2 (13) 

The right-hand side of this equation is worked out in appendix 1. Taking the square 
root and including a factor to match the conventional choice of phase, we obtain 

A( jl j2j3) = (-1)’1+’2+’3[( j, + j2+ j3+ l)!  ( j ,  + j2 - j,)!( j2+ j3 - jl)! ( j ,  + j, - j2)!]1’2. (14) 

3. The 9-j symbol 

Although our analysis so far may seem somewhat cumbersome for treating 3-j symbols, 
we can immediately write down an expression for a 9-j  symbol by using the well known 
result that it is equal to a sum over a sextuple product of 3-j symbols (Edmonds 1957, 
equation (6.4.4)). The only delicate point is to ensure that the pairs of identical m, 
values in the sextuple sum are properly matched, and this can be done by introducing 
the differential operators djk’ with ranks k that exactly tally with those of the corre- 
sponding t lk ’ .  Three pairs of equations of the types (9) and (11) are combined with 
three more pairs in which 0 and t are replaced by R and d. Putting the six parts 
together, we obtain 

A( J 1 h j 3 M (  j 4 j 5 j 6 ) N  jM9M jlj4j7)N j& J ~ ) A (  j3j6j9) 

jl j 2  j 3  

x j 4  j, j 6  ii; 1 8  j ]  
- - ~ J I + J ~ - J ~ R J ~ + J ~ - J I ~ ~ ~ + J ~ - J ~ ~ J ~ + J ~ - J ~ ~ J ~ + J ~ - J ~ ~ J ~ + J ~ - J ~  

14 47 25 58 82 

x R J ~ ~ - J ~ ~ J ~ + J ~ - J , R ~ ~ ~ ~ : J ~ - J ~ ~ J I + J ~ - J ~ ~ J ~ + J ) - J L ~ J ~ + J I - J ~  
69 12 23 3 1  

x o~5+J5-J6oJ~+J6-J4oJ6+J4-JsoJ7+J~-J9oJ8+J9-J7oJ9+J7-J8 56 64 78 89 97 * (15) 
The total degree of differentiation is X j j i ,  and this is equal to the degree of the 
polynomial in the various 5j and Tk, so the residue is a number. A procedure for 
evaluating the right-hand side of equation (15) is described in appendix 2. After 
rearranging the factorial functions, we conclude that 

j 7  J8 j9 

is 

A (  j1jA 1 A (  j&Jd A( j 7 j 8 j 9 M  j, j 4 j 7 )  A( j 2 j 5 j M  j3j6J9) 
times the coefficient of (A2.3) in (1 - 1, - 16)-2, where 1, and z6 are given in equations 
(A2.1) and (A2.2). The functions A(jpjqj,) can be found from equation (A1.7). 

4. Generalisations 

Our analysis, though possibly appearing rather complex, is in a form that makes 
generalisation easy. The crucial point to notice is that tjvj - T)& is a simple example 
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of an antisymmetric bilinear form, and the invariance of such forms is a characteristic 
feature of symplectic groups. The root figures for the algebras of SU(2), SO(3) and 
Sp(2) all consist of two oppositely directed vectors, and the three groups are in 
consequence locally isomorphic to one another. In fact, we could develop all of angular 
momentum theory for the unitary compact form of Sp(2) rather than for SO(3). 

The simplest generalisation of Sp(2) is to Sp(4). As this is followed through it 
becomes obvious how to make the extension to Sp(2n). To begin with, the two- 
component spinor ((, 77) is replaced by the four-component spinor ((, 5, A, 7). The 
generators 1 of Sp(2), given in equations (3), go over into the ten generators of Sp(4). 
As indicated by Racah (1965, equation 76), the two commuting generators of the type 
Hi are given by 

HI = 58, - 78, H2 = - A a,. (16) 

("J'A '71 ' / / ( a  ! b ! c ! d !)1'2 (17) 

for a fixed a possesses the eigenvalues a - d of H, and b - c of H 2 .  The highest weight 
of the array ( a  - d, b - c )  is (a, O), and this symbol (simplified by omitting the comma 
where practicable) denotes the irreducible representation for which the states serve as 
a basis. Irreducibility is guaranteed because the number of possibilities for a, b, c and 
d exactly matches the dimension of (a, 0), which, from the formula of Flowers (1952), 
is :(v+ l ) ( a + 2 ) ( a +  3) .  It is also the dimension of the totally symmetric representation 
[a]  of U(4). This is only to be expected, since the identity of the a factors 6, the b 
factors 5, etc, in (17) ensures that our basis for (a, 0) is built from bosons. The existence 
of irreducible representations (ala2) for which u2 # 0 indicates that our analysis can 
only cope with a limited class of representations of Sp(4) and, in general, we are 
restricted to those irreducible representations of Sp(2n) of the type (a0 .  . . 0). 

Within that limitation, we can proceed without difficulty. Our spinor invariant 
becomes 

5 1 7 7 2 -  7?152+ 5 1 A z - A * 5 2  (18) 

The collection of states 

( a +  b + c + d  = V )  

2( t\lO)t:'O))(Oo) = 

and the analogue of equation (4) is 
( t ( ~ O ) t ( u ' O ) ) ( ~ " O )  = a( a + a t ,  a " ) t (u "o)  

The generalisations of a,, and 0, run 

a,, = a2/a5,aTI -a2/a771a5J +a2/ailahJ -a2/aA,ag, 

01, = 517, - 7715, + 5J, - A,5,. 

(20) 
and 

(21) 
Analogues of equations (9) and (11) can at once be written down by making the 
substitution j ,  + ;al and letting m, stand for the quartet of symbols (a,b,c,d,) for which 
a, + b, + c, + d, = U,. The first significant difference concerns the evaluation of 
A ( a 1 a 2 a 3 ) .  The method of appendix 1 can be followed as before provided we make 
the replacement 

detla, a,, a,lrJk -+ detla, a,, a,llJk +detla, a,, a A l t , k  (22) 
in the first of the exponential functions of equation (A1.5). The second function must 
be similarly extended but, because a& and a,, commute with all functions of the f; and 
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A j ,  we simply get the product of two independent parts. As a result of this separation, 
the power -2 in the prefacing factor on the right-hand side of equation (A1.5) becomes 
-4. We can see how the generalisation to Sp(2n) goes: the power is -2n and equation 
(14) becomes 

i l ( c ~ l a z a 3 )  = ( -1) ( ‘~+u2+u~)’z[ ( ta l  +tu2 +fa3 + 2n - I ) !  
x (+PI + I ~ , - - 1 c r 3 ) ! ( q ~ , + + a 3 - 4 ~ , ) !  1 1  

(23) 

We can also see how to generalise the analysis for the 9-j symbol. The 9-(a) symbol 
for Sp(2n), namely 

( r 7 , O .  * . 0) ( a z o . .  . 0) (a30.. . 0) 
(a40. . . 0) ( ~ ~ 0 .  . . 0) (u6O. . . 0) 
(a70.. . O )  (ago.. . O )  ( ago . .  . O )  

is 

A ( (+I (+Za3 ) A( a4a5 A ( u7 (+8 (+9) A( a4a7) A ( (+Za5 (+E) A ( a3 a6a9) 

times the coefficient of (A2.3), modified by making the substitutions j ,  -$$U, everywhere, 
in 

( 1  - z4- (25) 
where, in analogy to equation (A1.7), 

A(aiCT,ak) =[(-?,Ul  +~U,-ta,)!(-?2a,+-?,ak-4Ul)! 

x (tuk +fal  -;a,) ! (2n - 1 )  !/(+a, +fa, +$ak + 2 n  - 1 )  !I1’*, (26) 

5. Discussion 

Perhaps the most remarkable feature of our result (25) is that it is no more difficult 
to evaluate the 9 - ( a )  symbol (24) than an ordinary 9- j  symbol. The same generating 
function (1 -I4- I,) appears, albeit with a different inverse power, but only minor 
adjustments need to be made to the A functions. The demonstration by Wu (1972) 
that Schwinger’s generating function ( 1  - 14- I,)-’ leads to an expression for the 9-j 
symbol in terms of a sum over six running indices indicates that a similar sextuple 
sum occurs for the 9-(a) symbol. 

No multiplicity labels appear in the 9-(a) symbol (24). These would be required 
for the general case in which representations such as . . . u l n )  appear. However, 
the basis functions (17) make it clear that a particular irreducible representation 
( W O . .  . 0) occurs once or not at all in the decomposition of the Kronecker product 
( a ’ O  . . . 0) x (a”0 . . . 0), so no additional labels are required. By limiting ourselves to 
representations of the type ( ( T O . .  . O )  we have effectively made the group simply 
reducible in the sense of Wigner (1965). A glance at the decompositions of the products 
(“0. . . 0) x ( a ” 0 .  . . 0) into the representations (a0 . . , 0) given by Wybourne (1970, 
tables 0 - 8 - 0 - 1 5 )  shows that, if U ‘  and U” are both odd or both even, then a is even, 
but if U ‘  and U’’ possess opposite parity, then U is odd. This property guarantees that 
all the arguments of the factorial functions appearing in equations (23) and (26) are 
integers. 
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The group Sp(4) is isomorphic to S 0 ( 5 ) ,  every irreducible representation ( O , ( T ~ )  

of Sp(4) corresponding to (fa, +:a2, tul -:a2) of SO(5). Thus our general result 
enables us to find the 9- W symbols of the type 

of SO(5). 

6. Reduction to a 6 - ( a )  symbol 

If we set a, = 0 in (24), the 9-(a) symbol vanishes unless a6 = a3 and as = u7. The 
powers of a3,  a,, b7 and b, in the product (A2.3) are zero, and we can therefore remove 
all terms in 1, and 16 that involve any of these four quantities. In this way we find 

Z4 -* a,a2b, b, + a4a5 b,b, + aBa9b, b, + a9a7 b2 b5 + a7a8 b3 b, 

16 -* a2a4a9 b2 b,b, - a, a5a9 b,  b5 b, . 
When (1 - 1, - Z6)-2” is expanded by the multinomial theorem, b, appears in products 
of the type 

(ala2b6b9) (a4a5b9b3)”(aza4a9b2b4bg)Y ( -a,a5a9blb5b9)‘ 
i.e. with a total power of w + x + y + z .  However, the power of a ,  plus the power of 
a, is the same as this (and equal to a7), so nothing is gained by picking out the 
coefficient of b,. Accordingly, we set b9=  1. A similar argument allows us to take 
a,= 1 ,  and we obtain 

1 - Z, - 1 6  + 1 - a la2  6,  - a4a5 b3 - a,b, b, - a7 b2b5 - a7a8b3 b, - a2a4b2 b, + a l a 5  b ,  b5 . 
The asymmetry in the signs can be removed by making the replacements 

a, -* -a ,  b , +  -b ,  b2+ -b2 b3+-b3 

and we now have 

1 - Z4 - l6 + 1 + a, a2b, + a,a5b3 + ash, b, + a7b2b5 + a7a6b3b6 

+ a2a,b2b,+a,a5b,b5 

while the phase change, from (A2.3), is (-l)’, where 

7 = f ( r 4 +  U7 - VI) +;(a, + U3 - a,) +$( U3 + ( 7 1  - a2) +;((TI + a2 -a3) 

=;(a2 + U3 + a7). 

It can also be shown from equation (26) that 

A(a,aJO)=6(u, ,  aJ)[u,!(2n-1)!/(u,+2n-1)!]”2=8(a,, aJ)[D(a,O 

(29) 

. 0 ) ] - ” 2  

where D(aiO. . . 0) is the dimension of ( a i O .  . . 0). Thus, on putting a9 = 0, the 9-(a)  
symbol (24) becomes 

( -1)T8(fT3,  U,)8(a7, cTs)[D(Cr30.. . O)D((T70.. . 0)]-”2 

. . . 0) ( ~ ~ 0 . .  . 0) (a30..  . 0) 
( a 5 0 . .  . 0) (a,O.. . 0) ( ( ~ ~ 0 . .  . 0) 
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in which the 6-(0) symbol is 

A ( (+I ~2 ~ 3 )  A ( ~2 (+5 ~ 7 )  A( U I  ~ 4 ~ 7  1 A ( (+3 ~ 4 ~ 5  1 
times the coefficient of 
a ( V I  +u4-u,)/ 2 (U4+=, -Ul  ) /  2 ( U,+UI -U4)/ 2 (u2+us- 0 , ) / 2  

7 a ,  0 4  a,  
aF+L--u2)/2 (u,+u2-us) /2  (u,+u2-u ) 2 (U +u3-u1) /2  

b6 b5 

0 5  b3 3 /  b ,  2 

(31) 

in (1 - z4- 16)-*", where 1 - z4- 16 is given in equation (28). The reduction of (24) to 
(30) exactly matches the collapse of a 9-j symbol to a 6-j symbol when one of the 
arguments of the former is set equal to zero. The phase exponent 7, given in equation 
(29), becomes simply j2 +j3 + j4 + j 7 ,  in agreement with equation (6.4.14) of Edmonds 
(1957). 

b p +  V I  - u2 ) /  2 ( u4+ us - UJ ) /  2 b p + u 3  - u4)/ 2 ( u3+ u4- us )/ 2 

7. An example for Sp(2n) 

In the process of developing formulae for various 6-(v) symbols for Sp(2n), Suskin 
(1986) has derived expressions for several of the type appearing in equation (30). His 
techniques are somewhat similar to those worked out earlier for SO( n) and G2 (Judd 
et a1 1986, Judd 1986), and are distinct from the methods used here. 

As an example of our formulae, we calculate 

. . .  0) (10 . . .  0) (U- l ,O.* .O)  rU0 (lO..*O) (U0 . . .  0) (20 . . .  0) 

With the aid of equation (26), we find 

A(u, 1, U -  1)=[((+-  1)!(2n - 1 ) ! / ( ~ + 2 n - l ) ! ] " ~  

A(u, ~ , 2 ) = [ ( ~ - 1 ) ! ( 2 n - l ) ! / ( ~ + 2 n ) ! ] " ~  

A(1, 1,2) = [1/2n(2n + 1)]"2. 

(33) 

According to (31), we seek the coefficient of 

a ~ - ' a , a 4 a 2 a 5 b , b ~ - '  b6b7-' (34) 

in (1  - 1,- 16)-2". The absence of a ,  and b4 in (34) allows us to simplify (28) by 
dropping three terms. We thus arrive at 

(1 + ala2b6+ u4u5b3+ a7b2b5+ a,a5b,b5)-2" 

= (-l)p+q+r+s ( 2 n + p + q + r + s - 1 ) ! ( a , a 2 b 6 ) P ( a 4 a 5 b 3 ) 9  
p.4. 

~ ( a ~ b ~ b ~ ) ~ ( a , a , b , b ~ ) ~ / ( 2 n  - l)!p!q!r!s!.  (35) 

Equating corresponding powers in (34) and (35), we get p = 1, q = 1, r = U - 1, s = 0, 
together with five checks on these equations. The coefficient of (34) in (35) is thus 

( - I ) ~ + ' ( U  + 2n)!/(2n - I ) !  ( U  - I ) !  

and, on multiplying this by the four A functions given in equations (33) (the first being 
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used twice), we obtain 
(-1)""[(a+2n)/2(o+2n - I ) ] "~ [D(v-  1 , 0 . .  . o ) D ( ~ o . .  . o ) ] - "~  

in agreement with Suskin. 

8. Concluding remarks 

When n > 1, we can no longer check our results by using the analogues of the sum 
rules for the 6-j and  9- j  symbols. This is because the dummy representations 
(a laz . .  . a,) over which the sums must be performed will almost always involve some 
for which cl # 0 ( i  > l ) ,  and  our techniques cannot be used to calculate them. On the 
other hand, we can of course use the sum rules, including such elaborations as the 
Biedenharn-Elliott identity (Edmonds 1957, equation (6.2.12)), to gain information 
about the 6-(a) and 9-(a) symbols outside the range of our formulae. Butler and 
Wybourne (1976) have described how the various equations satisfied by generalised 
6-j symbols can be used recursively to compute them, and this method would be 
alleviated for Sp(2n) by the values provided by our explicit expressions. At the same 
time, the procedures of Butler and Wybourne (1976) for choosing phases would need 
to be re-examined if conflicts in signs are to be avoided. At the very least, however, 
our results would give checks on magnitudes. 

The symmetry properties of the 6-j  and  9-j symbols stemming from the symmetries 
of their generating functions carry over to the 6-(a) and  9-(a) symbols of the type that 
we have been investigating. In addition to the obvious extensions involving inter- 
changes of rows or columns, the symmetries discovered by Regge (1959) reappear. 

Our methods can be generalised to evaluate other n - ( a )  symbols. Equation (15) 
is exceptional in that it employs only those spinor invariants of the type e,, and ill,. 
In general, the mixed form @,,, given by 

is sometimes needed. This is the so-called polarising operator of Grace and Young 
(1903). If we had used annihilation and creation operators to express our spinor 
invariants, would be recognised as an  operator of the type ( U ~ U , ) ' ~ '  that preserves 
the number of particles. However, very little is gained by a notation that explicitly 
shows scalar products, since all of our work is based on them. 

When the generating function is used to derive an  explicit formula for the 6 4 ~ )  
symbol appearing in (30), it is found that there is a close parallelism to the classic 
formula for a 6-j symbol. A single running index z is required as before but, in addition 
to changing the A functions according to (26) and using $a, instead of j , ,  the factorial 
( z + l ) !  appearing in the numerator of equation (6.3.7) of Edmonds (1957) must be 
replaced by ( z + 2 n  - 1)!/(2n - l)!. That is, 

@,, = S d / a V ,  + ~ , a / d 5 ,  

I . . . 0)  (a,O.. .O) (a30. .  .O) 
(a,O.. . 0 )  ( a 4 0 . .  . O )  (a70. .  . O )  

= A( (+2(+3 A(  aZa5a7) A( a 4 ~ 7 ) A (  a3a4a5 ) 
xC{( -1 )Z(z+2n  -1 ) ! [ (2n -1 ) ! ] - ' }{ [z - ; ( a l+a~+a~) ] !  

x [z - ;(a, + a5 + a.?)]! [ z  -;(a, + a, + a,)] ! [ z  - $(a3 + a 4  + a,)] ! 
x [ ;( Cl + a2 + a 4  + a,) - z ] ! [ ;( a, + a3 + as + a7) - 23 ! 

z 

[$( a 2  + U3 + a 4  + a,) - 2 ] ! } - I ,  (36) 
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x h  yh z h  

detlx, y ,  Zlhj ,  X I  yj Zi 

Xj Y j  Zj 
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Appendix 1. Calculation of A( jl j z  j,) 

(Al.2) 

(A1.3) 

the penultimate step following from a lemma of Grace and Young (1903,O 26). To 
determine the dependence of T on a , ,  we use a technique of Schwinger (1965, equation 
C2). We apply alas, to T, thereby producing the operator vaqz+paC2, which can act 
on detlb, U', u ' ( , ~ ~ .  The result of doing this yields the factor 

b l ( ~ V ' - u ~ ' ) + b 3 ( V 5 1 - ~ T ) 1 )  

which, being set between the two exponentials in (Al.l) ,  has to be extricated by means 
of the commutation relation 

[exp(a3RI2), (.61 -pr)l)l =a3(vav,+Pa&). 
The differential operator on the right is the same one that was produced originally by 
a laa , ,  and we can thus set up a differential equation of the type aTlaa, = f T ,  with the 
solution T = To exp( f a , ) .  This procedure can be repeated with a 2 ,  b, and bt. The 
final result is 

T = ( l  - a 3 b 3 ) - 2 e x p [ ( a 1 b , + a 2 b 2 ) ( p v ' -  vp')(1-a3b3)-'] (Al.4) 

which is equivalent to equation ((27) of Schwinger (1965). 
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We now generalise equation (A1.4) in a different direction from that of Schwinger. 
With the aid of the equation 

exp[ad,; ( x + c ) ]  exp(bx) = (1 -a ) - '  exp[bx/(l - a ) ]  exp[abc/(l - a ) ]  

where exp( p ;  q )  = Z, p " (  n ! ) - lq" ,  we obtain, after some straightforward but lengthy 
manipulation, the result 

exp(detla, a 9 ,  dqI , , k )  

xexp(detlb, 6, ~ / y k + ~ ~ ~ ~ - r ] ~ ~ ~ + ~ , ~ j - T ] j ~ , + ~ k ~ k - ~ k ~ k )  

= (1 - a,b, - a,b, - akbk)-> exp[det)a, p, V l y k  

x (1 - a,b, - u,b, - akbk)-']. (A1.5) 

To find A2(jl j2j3),  we set all p/ and v/ to zero and note that the product on the 
right-hand side of equation (13) is 

[(jl +j2 - J 3 ) !  (j2+j3 -j l ) !  (j, +j, -j2)!12 (A1.6) 

times the coefficient of 
( a3b3)J~+J2-J3( a, bl)J2+J3-Jl( a2b2)J3+Ji-J2 

on the left-hand side of equation (A1.5). This coefficient can be immediately evaluated 
by turning to the right-hand side of equation (AlS) ,  which fixes it at [A(j,j2j3)]-2, 
where, to use a traditional notation, 

A(j1~2j3)  = [ ( j l  + j 2 - j 3 ) ! ( j 2 + j 3 - J , ) ! ( j 3 + j ,  - j d ! / ( j l + j 2 + j 3 +  I)!]"~. (A1.7) 

Thus A*( j, j2j3)  is (A1.6) times [A( j, j2j3)]-2, and the result of equation (14) follows. 

Appendix 2. Generating function for a 9-j symbol 

To evaluate the right-hand side of equation (15), we apply equation (A1.5) three times. 
We first take ( i j k )  3 (147), b, = 0, v, = b 3 ~ 2  - b2713, p ,  = b35, - b263, together with the 
extensions over the three cycles (147), (258) and (369) for b, ,  v1 and p , .  We next 
take ( i j k )  = (258), noting that, in the reapplication of equation ( A l S ) ,  we must make 
the replacements 

b2' a1b6b9 

v2 ' bl  7 3  + a4b3b8779 - 

p2 * b l  5 3  + a4b3 - b556 

bS776 

together with their cyclic extensions. The final step involves taking ( i j k )  = (369). 
Although b,, b6 and b9 are rather lengthy, we now have vf = puI = 0, so the exponential 
in equation (A1.5) becomes 1. We are left with (1 - I ~ -  1 6 ) - 2 ,  where 

I4 = a2a3b4b7 + a3a1 bsb8 + a,a2b6b9 + asa6b7b, + a6a4bsb2 + a4asb9b, 

+ a8a9b,b4+a9a7b2bs+a7aab3b6 

I , =  a2a4a9b2b4b9+asa7a3bsb7b3+ a8a,a6b8b,b6 

-a,a,a9b,b5b9-a4aga3b4b8b3-a7a2a6b7b2b6. 

(A2.1) 

(A2.2) 
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We can now evaluate the right-hand side of equation ( 1 5 )  by picking the coefficient of 
a $ + J 4 - J 7 a  J.,+J7-J[ J , + J , - J q  J ~ + J ~ - J g a J ~ + J g - J 2  J g + J 2 - 1 5  

1 ‘4 2 a5 
x a f  + J 6 - J 9  a3  J 6 + J p - J )  a6 J g + J 3 - J 6  b ,  J,+J2-JgbJ2+J3-J,b:3+J,-J2 

1 

b ; + J s - J 6 b J d + J 6 - J 4  b~~J4-JsbJdfJa-J9b:8+J9-Jiblg9+Ji-Ja (A2.3) 

in the expansion of (1 - Z4 - 16)-’ and multiplying the result by I’I( j ,  + j ,  - j , ) ! ,  where 
J p ,  j ,  and j r  run over the 18 combinations appearing as powers in equation (A2.3). 
This 18-fold product of factorials occurs when the exponentials on the left-hand side 
of equation (A1.5) are expanded as products of the 0, and the Okl .  The components 
Z4 and 1 6  in the generating function differ in a few signs from those given by Schwinger 
(1965, equation (4.37)), but are identical to those of Wu (1972, equation 43), who 
developed the method of Bargmann (1962) based on Laplacian integrals. 
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